趋势五:视频图像类应用的碎片化与场景化成为AI快速落地推广的拦路虎
CV类场景是引爆AI大火的导火索,同时,由于大多图像场景偏识别类,跟业务离得比较远,可以大规模地在市场上扩张。
不过,我们可以惊奇地看到,CV类的需求还在不停地膨胀。这是因为,当前市场的CV巨头在人脸、车辆等通用需求方面进行了大规模落地,而对于一些偏碎片化的场景,比如设备故障识别、异常识别,甚至特殊场景的人脸识别,都缺乏足够的技术支撑与耐心去推动落地。
因此,怎样提升CV场景落地的效率成为大多数CV从业者的主要工作方向,这里面包括多个维度:第一,从科研层面去革新算法,第二,从工具层面去落实标注、训练、部署等的一体化平台,第三,从市场角度定义行业通用化的场景,第四,从技术角度去优化模型,从而降低实施成本。
在这个大背景下,四大CV独角兽也好,互联网巨头也好,都试图去推动平台的落地。然而,在这样的“四维”要求下,要踏踏实实地在细分场景中打磨通用模型、平台,谈何容易。但这也让耕耘细分行业的小CV厂商有足够的空间去摸索。
趋势六:AIOT物联网场景没有大规模的需求爆发,细分行业开始出现落地
我们看到,所谓的AIOT场景,主要还是CV类场景带动,但一些深入需求(如需要传感器数据参与的预测性维护类场景)落地较少。
这跟“智能制造”的特点比较相关。客户在车间现场通常需要一个开箱即用的产品,而大多数AI类场景需要足够多的时间去打磨。另外,大多数工业场景需要的不仅仅是大量有价值的数据,还需要对工业场景有深刻的理解。
首先,“大量有价值”的数据本身不大可能获得。比如,在预测性维护的场景下,所谓“有价值”,就是指相同或者类似的设备历史上出现故障的时候对应的数据,这种数据当然很少。其次,在部分异常数据的加持下,一般的统计分析算法可能分析不出什么。这跟金融类的风控场景不同,风控场景考验的是人性,从人性的角度去做一定深度的分析,并结合算法就可以取得不错的效果。而对于设备,这里需要的是一个深刻理解机械原理的算法专家。
即使面对这样的困境,我们还是看到了一些制造业企业开始摩拳擦掌,虽然深入的AI算法用不上,简单的BI也能提供价值嘛。
只是感叹,Predix还是出来太早了,那2020年会有突破吗?还是得看“智能制造”的内生动力多大,期望一些细分场景会有落地。
人工智能的2019年注定是平静的一年,因为技术爆发以及投资引导时期已过,避免不了被冷清。然而,正如大多数技术周期一样,当技术本身有价值且具备落地能力的时候,技术落地的过程逐步展开。
我们相信对于大多数在探索人工智能落地过程的从业人员来说,故事才刚刚开始。而对于参与炒作概念的玩家来说,也找到了新的方向:区块链。
从更宏观的数字化转型的角度来看,还有太多的事情值得大家去落实。抓紧2019年的尾巴好好做几个落地项目吧。